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Chapter 4

BEAMS ON ELASTIC FOUNDATION

In this chapter a numerical method for the solution of the problem of a beam on an
elastic foundation is presented. Special care will be taken that the program can be
used for beams consisting of sections of unequal length, as the program is to be used
as a basis for a sheet pile wall program, and for a program for a laterally loaded pile
in a layered soil.

4.1 Beam theory

Consider a beam, of constant cross section, with its axis in the z-direction, see fig-
ure 4.1. The load on the beam is denoted by f (a force per unit length), and the

vt

Figure 4.1: Beam.

lateral displacement (in z-direction) is denoted by w. The basic equations from clas-
sical beam theory are presented below, very briefly. For a more detailed presentation
the reader is referred to standard textbooks on applied mechanics.

Equilibrium in z-direction, that is the direction perpendicular to the axis of the
beam, see figure 4.2, requires that

aQ _

9 (4.1)

where @ is the shear force. The sign convention is that a shear force is positive
when the force on a surface with its normal in the positive z-direction is acting in
the positive z-direction.

The second equation of equilibrium is the equation of equilibrium of moments,
which requires that

dM
W _q (4.2)
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54 4. BEAMS ON ELASTIC FOUNDATION

Figure 4.2: Element of beam.

where M is the bending moment. The sign convention is that a positive bending
moment corresponds to a positive stress (tension) on the positive side of the axis of
the beam.

The two equations of equilibrium can be combined to give

d>M
de?
This is the first basic equation of the theory of bending of beams.

The second basic equation can be derived from a consideration of the deforma-
tions of the beam. When it is assumed that plane cross sections of the beam remain
plane after deformation (Bernoulli’s hypothesis), and that the rotation dw/dx is
small compared to 1, one obtains

~f (4.3)

d?w

EFl— =-M 4.4
dzx? ’ (4.4)
where ET is the flexural rigidity of the beam.
The two basic equations (4.3) and (4.4) can be combined to give
d*w
El— = f. 4.

This is a fourth order differential equation for the lateral displacement, the basic
equation of the classical theory of bending of beams.

Equation (4.5) can be solved analytically or numerically, subject to the appro-
priate boundary conditions.

4.2 Beam on elastic foundation

For a beam on an elastic foundation the lateral load consists of the external load,
and a soil reaction. As a first approximation the soil reaction is assumed to be
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it

Figure 4.3: Beam on elastic foundation.

proportional to the lateral displacement. The basic differential equation now is
d*w
dot
where k is the subgrade modulus.

Various analytical solutions of this differential equation have been obtained, see

Hetenyi (1946). The homogeneous equation, obtained if f = 0, has solutions of the
form

EI— = f — kuw, (4.6)

w = Cyexp(x/A)sin(x/A) + Caexp(x/A) cos(x/A) +
Csexp(—z/N)sin(z/X\) + Cyexp(—z/N) cos(z/N), (4.7)

where A* = 4 E1/k. These solutions play an important role in the theory. It should
be noted that a characteristic wave length of the solutions is 27 A. In a numerical
solution it is advisable to take care that the interval length is small compared to
this wave length.

In this chapter a numerical solution method will be presented. In solving the dif-
ferential equation (4.6) by a numerical method it has to be noted that the bending
moment M is obtained as the second derivative of the variable w, and the shear force
@ as the third derivative. This means that, if the problem is solved as a problem
in the variable w only, much accuracy will be lost when passing to the bending mo-
ment and the shear force. As these are important engineering quantities some other
technique may be more appropriate. For this purpose it is convenient to return to
the basic equations as they were derived in the previous section. Thus the basic
equations are considered to be

d*M
rca —f+ kw. (4.8)
and
d?w
El— = —M. 4.9
T (4.9)

Although this system of two second order differential equations is of course com-
pletely equivalent to the single fourth order equation (4.6), in a numerical approach
it may be more accurate to set up the method in terms of the two variables w and
M. This will be elaborated in the next section.
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4.3 Numerical model

In order to derive the equations describing the numerical model, special attention
will be paid to the physical background of the equations. In this respect it is con-
sidered more important, for instance, that the equilibrium equations are satisfied as
accurately as possible, rather than to use a strictly mathematical elaboration of the
differential equations.

4.3.1 Basic equations

Let the beam be subdivided into a number of sections, say n sections. Now consider
equilibrium of a single section, see figure 4.4, between the points x; and x;4;. This
section will be denoted as element i+ 1. The element is supposed to be loaded by a

Figure 4.4: Element of a beam.

distributed load f;1+1 and a concentrated force P;, which acts just to the right of the
point x;. The soil reaction is generated by the displacement, and will be of magni-
tude —k;+1W;41, where k;y; is the subgrade constant in element 7 + 1, and w;; is
the average displacement of that element. The length of the element is supposed to
be dl’Jrl .

Lateral equilibrium of the element requires that
Qiv1 — Qi = —P; — fiyrdiy1 + 2 Rija(wi + wig), (4.10)

where R;11 = k;t1d;+1, and where it has been assumed that the average displace-
ment of the element is the average of the displacements at the two ends. The
subgrade modulus has been assumed to be constant over the element.

For element i the equilibrium equation can be obtained from eq. (4.10) by re-
placing @ by ¢ — 1. The result is

Qi — Qi1 =—Pi1 — fidi + S Ri(wi1 + w;). (4.11)
By adding these two equations one obtains

Qiv1 —Qi-1=—-P —P_1 — fipdip1 — fidi +
%Rm}Fl + %(Rl + RHl)wi + %Riﬂwi“. (412)
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This can, of course, also be considered as the equation of equilibrium of the two
elements 4 and ¢ + 1 together.

Equilibrium of moments of element ¢ 4+ 1 about its center requires that

My — M; = 3(Qiy1 + Qi)dip1 — 3 Pidiy1. (4.13)
Replacing ¢ by ¢ — 1 gives the equation of moment equilibrium for element i,

M; — My = 3(Qi + Qi—1)ds — $Pi_1d;. (4.14)

Elimination of @; from (4.13) and (4.14) gives

1 1 1 1
My — (—— + —)M; + —M;_, =
iy Min = (G + ) Met M
%(Qi+1 —Qi-1— P+ Py), (4.15)

or, with (4.12),
1 1 1 1

Ty M~ Gy ¥ Mt g M
—3Ri1wipr — (R + Riy1)w; — Riw;i—1 =
—5(difi +dis1fir1) — P (4.16)

This is the first basic equation of the numerical model. It is the numerical equiv-
alent of eq. (4.8). All terms can easily be recognized, but the precise value of all
the coefficients is not immediately clear. For this purpose the complete derivation
presented above has to be processed.

The second basic equation must be the numerical equivalent of equation (4.9). This
can be obtained as follows. Consider the two elements to the left and to the right
of point z;. In the element to the left (element ) we have

d*w 1

where it has been assumed that the bending moment in this element is the average
of the values at the two ends. On the other hand we have in element i + 1,

d*w 1
x>x; Efwz—g(Mi—i-MHl). (4.18)

These two equations can be integrated, assuming that the right hand side is constant,
to give
<z Flw= —%(MFl + M) (2 — x)* +
Az — x;) + Elw;, (4.19)
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and
x>z EFlw= —%(Mi + M) (x — z)* +
Az — x;) + Elw;, (4.20)

where the integration constants have been chosen such that for x = x; the displace-
ment is always w; and the slope is continuous at that point (namely A/ET).

Substituting = x;_1 in eq. (4.19) and = z;41 into eq. (4.20) gives two expressions
for A. After elimination of A one obtains, finally,

EI . ( EI EI) - EI .
digy T N T !
+%di+1Mi+1 + %(dprl + dl)Ml + %diMi,1 =0. (421)

This is the second basic equation of the numerical model, the numerical equivalent
of the differential equation (4.9). Its form is very similar to the first basic equation,
eq. (4.16). When all the elements have the same size d, and all the coefficients in the
second part of the equation are lumped together, a simplified form of this equation
is

El 2E1 El

ﬁw’FFl — d—le + ﬁwiq + M; =0. (4.22)
This is a well known approximation of eq. (4.4) by central finite differences. The
refinements in eq. (4.21) are due to the use of unequal intervals and a more refined

approximation of the bending moment.

4.3.2 Boundary conditions

The boundary conditions must also be expressed numerically. This requires some
careful consideration, as it is most convenient if the two boundary conditions at
either end of the beam can be expressed in terms of w and M in these points. This
is very simple in the case of a hinged support (then w = 0 and M = 0). For other
boundary conditions, such as a clamped boundary or a free boundary, the boundary
conditions must be somewhat manipulated in order for them to be expressed in the
two basic variables. If the left end of the beam is free the boundary conditions are

My = —M,, (4.23)
Qo = —F, (4.24)

where M, is a given external moment, and Fy is a given force. The first boundary
condition can immediately be incorporated into the system of equations, but the
second condition needs some special attention, because the shear force has been
eliminated from the system of equations. In this case equation (4.10) gives, with
1 =0,

Ql = —Fg - fldl + %Rl(wo + wl). (425)
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This equation expresses lateral equilibrium of the first element. On the other hand,
the equation of equilibrium of moments of the first element gives, with (4.13) for
1 =0,

My — My = 3(Q1 — Fy)da. (4.26)

Elimination of @)1 from these two equations gives

2 2
%leO + %lel + d_MO — d—Ml = fidy + 2F}. (4.27)
1 1
In this form the boundary condition (4.24) can be incorporated into the system
of algebraic equations. It gives a relation between the bending moments and the
displacements in the first two points.
If the left end of the beam is fully clamped the boundary conditions are

wo =0, (4.28)

ow
=0: —=0. 4.29

* ox (4.29)
The first condition can immediately be incorporated into the system of equations.
The second condition can best be taken into account by considering equation (4.22)
for i =0,

El 2FET El
ﬁwl — 7’(00 + ﬁwA + MO =0. (430)
The boundary condition (4.29) can be assumed to be satisfied by the symmetry
condition w_; = w1, and thus, because wy = 0,

ngwl + My = 0. (4.31)
The distance d in this equation must be interpreted as the length of the first ele-
ment. The condition (4.31) can easily be incorporated into the system of algebraic
equations.
The boundary conditions at the right end of the beam can be taken into account
in a similar way as those at the left end.

4.3.3 Computer program

An elementary computer program, in Turbo Pascal, is reproduced below, as the
program WINKLER. The program applies to a beam consisting of a number of
sections. Each section can have a different load, and have a different subgrade
constant. In the points separating two sections concentrated loads can be applied.
The two boundaries can be clamped, hinged or free. Output is given in the form of
a list on the screen.
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program winkler;
uses crt;
const
ss=20;nn=100;zz=4;
var
sec,jl,jr:integer;ei,tl,tr:real;
1,k,q:array[1..ss] of real;xx,ff,mm:array[0..ss] of real;
x,d,f,r,p,m,w:array[0..nn] of real;
atarray[0..nn,1..2z,1..2,1..2] of real;
pt:array[0..nn,1..zz] of integer;
g:array[1..2,1..2] of real;
procedure title;
begin
clrscr;gotoxy(36,1) ;textbackground(7) ;textcolor(0);
write(’ WINKLER ’);
textbackground(0) ;textcolor(7) ;writeln;
end;
procedure next;
var
a:char;
begin
gotoxy(25,25) ;textbackground(7) ;textcolor(0);
write(’ Touch any key to continue ’);write(chr(8));
a:=readkey;textbackground(0);textcolor(7)
end;
procedure input;
var
i,j,m,n:integer;w,a:real;
begin
title;writeln;
write(’This is a program for the analysis of the deflections’);
writeln(’ and bending moments’);
write(’in a beam of uniform cross section, supported by an’);
writeln(’ elastic foundation.’);
write(’The beam consists of a number of sections, in each of’);
writeln(’ which the subgrade’);
writeln(’coefficient and the distributed load are constant.’);
writeln(’Concentrated forces may act in the joints.’);writeln;

write(’Number of sections ............. ’);readln(sec) ;writeln;
if sec<l then sec:=1;if sec>ss then sec:=ss;
write(’Flexural rigidity EI (kNm2) .... ’);readln(ei);writeln;

£f£f[0]:=0.0;xx[0]:=0.0;t1:=0.0;tr:=0.0;
for i:=1 to sec do

begin
title;writeln;writeln(’Section ’,i);writeln;
write(’ Length (m) .................. ’);readln(1[i]) ;writeln;
write(’ Subgrade constant (kN/m2) ... ’);readln(k[i]);writeln;
write(’® Distributed load (kN/m) ..... ’);readln(qlil]) ;writeln;
ff[i]:=0.0;xx[i] :=xx[i-1]1+1[4i];

end;

for i:=1 to sec-1 do

begin

title;writeln;

writeln(’Joint between sections ’,i,’ and ’,i+1);writeln;
write(’ Force (KN) ....oviiiiennnnnn. )

readln(£f£f[i]) ;writeln;
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end;
title;writeln;
writeln(’Boundary condition at left end’);writeln;
writeln(’ 1 : Fully clamped support’);writeln;
writeln(’ 2 : Hinged support’);writeln;
writeln(’ 3 : Free end’);writeln;
write(’Enter option number : ’);readln(jl);writeln;
if j1<1 then jl:=1;if j1>3 then jl:=3;
if j1>2 then
begin
write(’ Force (KN) .....ovviiiennnnnn. )
readln(££[0]) ;writeln;
end;
if j1>1 then
begin
write(’ Moment (kKNm) ................ )
readln(tl) ;writeln;
end;
title;writeln;
writeln(’Boundary condition at right end’);writeln;
writeln(’ 1 : Fully clamped support’);writeln;
writeln(’ 2 : Hinged support’);writeln;
writeln(’ 3 : Free end’);writeln;
write(’Enter option number : ’);readln(jr);writeln;
if jr<1l then jr:=1;if jr>3 then jr:=3;
if jr>2 then

begin
write(’ Force (KN) .....oviiiiennnnnn. )
readln(ff[sec]);writeln;
end;
if jr>1 then
begin
write(’ Moment (kKNm) ................ )
readln(tr) ;writeln;
end;
x[0]:=0.0;p[0]:=£f£[0];j:=0;for i:=1 to sec do
begin

w:=xx[i]-xx[i-1] ;n:=round ((w/xx[sec])*nn);if n<l then n:=1;
if j+n>nn then n:=nn-j;a:=w/n;
for m:=j+1 to j+n do
begin
x[m] :=x[m-1]+a;d[m] :=a;r[m] : =k [i] *a;
f[m]:=qlil*a;p[m]:=0.0;

end;
ji=m;pljl:=££[il;
end;
end;
procedure matrix;
var
i,j,k,l:integer;al,a2,bl,b2,cl:real;
begin
for i:=0 to nn do for j:=1 to zz do
begin
ptli,jl:=0;

for k:=1 to 2 do for 1:=1 to 2 do ali,j,k,1]:=0;
end;
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for i:=1 to nn-1 do
begin
ptli,1]:=i;pt[i,2]:=i-1;pt[i,3]:=i+1;pt[i,zz]:=3;
end;
pt[0,1]1:=0;pt[0,2] :=1;pt [0,22] :=2;
ptlnn,1]:=nn;pt[nn,2] :=nn-1;pt[nn,zz] :=2;
for i:=1 to nn-1 do
begin
al:=1.0/d[i+1];a2:=1.0/d4[i];
ali,1,1,1]:=-al1-a2;ali,2,1,1]:=a2;a[i,3,1,1]:=al;
ali,1,1,2]:==(r[i]l+r[i+1])/4.0;ali,2,1,2]:=-r[i]1/4.0;
ali,3,1,2]:=-r[i+1]1/4.0;
ali,zz,1,1]):=-(£[i]+£f[i+1])/2.0-p[i];
ali,1,2,2]:=—al1-a2;ali,2,2,2]:=a2;ali,3,2,2]:=al;
ali,1,2,1]:=(d[i]+d[i+1])/(4.0%ei);
ali,2,2,1]:=d[i]/(4.0%ei);ali,3,2,1] :=d[i+1]/(4.0%ei);
end;
al0,1,1,11:=1.0;a[0,1,2,2]:=1.0;
if j1=1 then al0,2,1,2]:=2.0%ei/(d[1]*d[11);
if j1=2 then al[0,4,1,1]:=-t1;
if j1=3 then
begin
al0,4,1,1]:=-t1;a[0,1,2,2]:=0.5*r[1];
al0,2,2,2]:=0.5%r[1];a[0,1,2,1]:=2.0/d[1];
al0,2,2,1]:=-2.0/d[1];a[0,4,2,2] :=f[1]+2.0*££[0];
end;
alon,1,1,1]:=1.0;a[nn,1,2,2]:=1.0;
if jr=1 then alnn,2,1,2]:=2.0%ei/(d[nn]*d[nn]);
if jr=2 then alnn,4,1,1]:=tr;
if jr=3 then
begin
alnn,4,1,1]:=tr;al[nn,1,2,2]:=0.5*r[nn];
al[nn,2,2,2]:=0.5*%r[nn] ;alnn,1,2,1]:=2.0/d[nn];
a[nn,2,2,1]1:=-2.0/d[nn];alnn,4,2,2] :=f [nn]+2.0*ff [sec];
end;
end;
procedure solve;
var
i,j,k,1,ii,ij,1k,jj,jk,j1,jv,kc,kv,1lv:integer;
cc,aa:real;
begin
for i:=nn downto O do
begin
kc:=pt[i,zz];for kv:=1 to 2 do
begin
if al[i,1,kv,kv]=0.0 then
begin
writeln(’Error : no equilibrium possible’);halt;
end;
cc:=1.0/ali,1,kv,kv];
for ii:=1 to kc do for 1lv:=1 to 2 do
begin
ali,ii,kv,1lv]:=cc*ali,ii,kv,1v];
end;
ali,zz,kv,kv]:=cc*ali,zz,kv,kv];
for 1lv:=1 to 2 do if (1v<>kv) then
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begin
cc:=ali,1,1lv,kv];
for ii:=1 to kc do for ij:=1 to 2 do
begin
ali,ii,1v,ijl:=ali,ii,1v,ijl-cc*ali,ii,kv,ij];
end;
ali,zz,1lv,1lv]:=ali,zz,1v,1v]-cc*ali,zz,kv,kv];
end;
end;
if kc>1 then
begin
for j:=2 to kc do
begin
jj:=ptli,jl;1l:=ptljj,zz];jk:=1;
for jl:=2 to 1 do begin if pt[jj,jl]l=1i then jk:=jl;end;
for kv:=1 to 2 do for 1lv:=1 to 2 do glkv,1lv]:=aljj,jk,kv,1lv];
ptljj,jkl:=pt(3j,1];pt[jj,1]1:=0;
for kv:=1 to 2 do for 1lv:=1 to 2 do
begin
aljj,jk,kv,1v]:=aljj,1,kv,1v];aljj,1,kv,1v]:=0;
aljj,zz,1lv,1v]:=aljj,zz,1v,1lv]l -g[lv,kvl*al[i,zz, kv, kv];
end;
1:=1-1;pt[jj,zz]:=1;
for ii:=2 to kc do

begin
ij:=0;
for ik:=1 to 1 do
begin
if pt[jj,ik]=pt[i,ii] then ij:=ik;
end;
if ij=0 then
begin
1:=1+1;ij:=1;pt[jj,zz]:=1;pt[jj,ij]:=ptli,iil;
end;

for kv:=1 to 2 do for 1lv:=1 to 2 do for jv:=1 to 2 do
aljj,ij,kv,lv]:=aljj,ij,kv,1v]l-glkv,jvl*ali,ii,jv,1v];
end;
end;
end;
end;
for j:=0 to nn do
begin
1l:=pt[j,zz];if 1>1 then
begin
for k:=2 to 1 do
begin
jj=ptlj.kl;
for kv:=1 to 2 do for 1lv:=1 to 2 do
alj,zz,kv,kv] :=alj,zz,kv,kv]-alj,k,kv,1vl*aljj,z=z,1v,1v];
end;
end;
end;
for i:=0 to nn do
begin
m[i]:=ali,zz,1,1];w[i]l:=ali,zz,2,2];
end;
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end;
procedure output;
var
i,j,k:integer;
begin
k:=0;title;
writeln(’ i b4 W M’);writeln;
for i:=0 to nn do
begin
if k<=20 then
begin
writeln(i:6,x[i]:13:6,w[i]:13:6,m[i]:13:6) ;k:=k+1;
end
else if i<nn then
begin
next;k:=0;i:=i-2;title;
writeln(’ i b4 W M’);writeln;
end;
end;
next;
end;
begin
input;
matrix;
solve;
output;
title;
end.

Program WINKLER.

The program runs interactively, and will present information about its operation
and input data automatically. More advanced features, such as graphical output
facilities, may be added by the user.

The program uses a wave front technique to solve the system of linear equations.
In order to make full use of the banded structure of the system of equations the
non-zero coefficients are stored in a four-dimensional matrix a;;z;. The system of
equations is written in the form

n 2

Zza’ijklujl:bik; i:1;25"'5n7 k:1525 (432)

j=11=1

where u;; represents the bending moment at node j, and u;> represents the displace-
ment at node j. Similarly, b;; and b;2 represent the right hand sides of the basic
numerical equations (4.16) and (4.21), respectively. In the computer program the
values on the main diagonal (i.e. for j = i) are stored in the first column of the ma-
trix (ali,1,k,1]), the values to the left of the main diagonal (i.e. for j =i—1) are
stored in the second column of the matrix (a[i,2,k,1]), and the values to the right
of the main diagonal (i.e. for j = i+1) are stored in the third column (ali,3,k,1]).
The fourth column of the matrix (a[i,4,k,1]) is used to store the right hand sides
of the equations, by;. By storing the coefficients of the system of equations in this
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way the program can make use of a standard wave front algorithm for the solution
of the linear equations.

As an example a beam of 20 m length has been considered, with a bending
stiffness EI = 100 kNm?, on a soil having a subgrade constant & = 400 kN/m?.
The beam is loaded in its center by a load F' = 100 kN, and its two ends are free.
In this case the characteristic length is A = 1 m, which is small compared to the
length of the beam, so that the beam may be considered to be of infinite length.
The analytical solution of this problem is well known (Hetenyi, 1946). This solution
indicates that the displacement of the beam in the center is F/2\k. In this case

w (mm)

Figure 4.5: Example: displacements.

this is 0.125 m. The maximum bending moment occurs in the center, under the
point of application of the load. Its magnitude is %F A =25 kNm. These values are
indeed obtained, exactly, when running the program WINKLER with these data.
The displacements are shown in figure 4.5.

The numerical model for a beam on elastic foundation can be used as the basis for
a model in which the soil response is non-linear. This is especially useful for the
analysis of sheet pile walls, or laterally loaded piles. In such cases the soil pressure is
restricted between certain limits, the active and passive soil pressure, and an elasto-
plastic model may be used to model the soil response. This will be elaborated in
chapter 5.

Problems

4.1 Verify that the program WINKLER gives the correct results for some ele-
mentary problems of the theory of bending of beams, such as a beam on two hinged
supports carrying a point load in the center, or carrying a uniform load.

4.2 Verify also that the program WINKLER gives the correct results for a beam
with two free ends on a homogeneous foundation, carrying a uniform load. In this
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case the bending moments must be zero, and the displacement must be constant,
also if the beam is considered to consist of a number of sections of unequal length.

4.3 Compare the results obtained by the program WINKLER with analytical
solutions for the case of a long beam on a homogeneous elastic foundation, with a
force or a moment at its end.

4.4  Modify the program WINKLER so that it shows the deflection curve and the
bending moment in the form of a graph on the screen.

X



Chapter 5

SHEET PILE WALLS

An interesting application of the theory of beams on elastic support, presented in
the previous chapter, is the analysis of a sheet pile wall. This requires an extension
of the theory to elasto-plastic supporting springs. The analysis is presented in this
chapter, together with a simple computer program.

A sheet pile wall is a steel structure, usually composed of long folded beam el-
ements, used to separate two areas of different soil levels. If the level difference is
small the wall may be constructed as a cantilever wall, supported by being clamped
into the deep soil. For large differences in soil level the sheet pile wall is usually
anchored, see figure 5.1. Such structures are often used as quay walls in harbors or

Figure 5.1: Anchored sheet pile wall.

along canals, or as a wall surrounding a building pit. The design procedure usu-
ally consists of several stages, in which geotechnical engineering and soil mechanics
principles play an important role. Conceptually the mechanics of a sheet pile wall
is that it is assumed that at the upper side of the wall active horizontal soil pres-
sures will act, and that at the lower side passive horizontal soil pressures will be
generated. These assumptions are a logical consequence of the expectation that the
difference in soil level will tend to push the wall towards the direction of the lower
ground level (towards the left in figure 5.1). The length of the sheet piling must be
large enough to ensure that equilibrium between the active and passive pressures is
possible, taking into account the reactive force of the anchor. Very roughly speaking
the structure is a beam loaded by the active soil pressure on the right side, with two
supports : the anchor and the passive soil pressure on the lower left side.

The pressure distribution along the wall will give rise to bending moments in the
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structure, and the steel profile of the wall must be chosen such that it can withstand
these bending moments. This involves an elementary calculation of the maximum
stresses due to bending, and comparison of these stresses with the allowable stresses
in various steel beam profiles.

The third phase of the design is the choice of the anchor, on the basis of the
force needed to maintain equilibrium. This involves the choice of the distance of the
anchors, the length and depth of the individual anchors and the dimensions of the
anchoring plates.

Various simplified calculation methods have been developed in geotechnical en-
gineering, such as Blum’s method (Blum, 1931). In this chapter a more refined
method of analysis, using the theory of beams on an elasto-plastic foundation, is
presented.

It should be noted that in engineering design an important feature is the use of
safety factors. These will not be considered here.

5.1 Description of the model

A numerical model for the analysis of a sheet pile wall can be developed from the
numerical model for a beam on elastic foundation, as presented in chapter 4. The
soil response on both sides of the sheet pile wall is considered to consist of two
parts : one part proportional to the lateral displacement, and another constant
part. This enables to let the lateral soil pressure increase or decrease with the
lateral displacement, with two limiting values : the active soil pressure as the lower
limit, and the passive soil pressure as the upper limit.

The reaction of the soil is supposed to be elasto-plastic, as illustrated in figure 5.2.
This figure represents the soil reaction from the soil to the right of the sheet pile

R;

Kpol, + 2cy/Kp

Ui

Figure 5.2: Elasto-plastic soil response, right side.

wall, assuming that the positive direction of the displacements is towards the right.
The soil reaction is elastic if the displacement of the wall is small, and plastic if
the displacement exceeds a certain value, generating active earth pressure if the
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displacement is to the left, and passive earth pressure if the displacement is to the
right. In repeated loading and unloading the elastic branch of the soil response is
relocated, depending upon the accumulated plastic deformation. In general the soil
response may be written as

R; :Sl(vl —5¢)—|—E, (51)

where v; is the displacement of element ¢, which may be related to the displacements
of the nodes by

In eq. (5.1) T; is the accumulated plastic displacement, which must be updated during
the deformation process. The coefficient S; represents the slope of the response curve,
which is zero in the plastic branches. The term T} is zero in the elastic branch, and
may be used to represent the plastic soil response in the plastic branches.

The maximum lateral earth pressure is the passive earth pressure, for which
elementary soil mechanics gives the value

o, = Kyo, + 2¢\/Kp, (5.3)

where o'v is the vertical effective stress, ¢ is the cohesion, and K, is the passive
earth pressure coefficient, which is related to the friction angle ¢ by the relation

1+sin¢

K,=—.
P71 —sing

(5.4)

The minimum lateral earth pressure is the active earth pressure, which is given in
basic soil mechanics texts as

o, = K,0, — 2c\/ K. (5.5)
Here K, is the passive earth pressure coefficient,
1—sing
e =—. 5.6
1+4sin¢ (5:6)

Usually the active earth pressure is limited from below by requiring that the effective
stress cannot be negative,

al, > 0. (5.7)

The lateral pressure in the case of zero displacement is assumed to be defined by the
coefficient of neutral earth pressure K,

o, = Kool,. (5.8)

It should be noted that there is also a response on the other side of the wall.
This is of the same type as the response on the right side, except for the sign, see
figure 5.3. Initially, for very small displacements, the two responses will both be in
the elastic range, and this simply means that the stiffnesses can be added. After
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Figure 5.3: Elasto-plastic soil response, left side.

plastic deformations have occurred, however, the response becomes more compli-
cated, because the transition from the elastic to the plastic branches is shifted when
the plastic deformation accumulates. The description of the wall-soil interaction can
most conveniently be implemented by considering the response from the two sides
of the wall separately.

The slope of the response curve in the elastic branch may be denoted as a spring
constant k. Alternatively, this slope may be characterized by the length of the elastic
branch, the displacement difference between the active and the passive horizontal
earth pressure. This quantity is called the stroke, Av. It is indicated in the figures 5.2
and 5.3. The relation between the stroke Av and the spring constant k is

y4 a
k= Ao (5.9)
In general the effective stresses increase with depth, about linearly. If the stroke
Av is constant this would mean that the spring constant k also increases linearly
with depth. As an increase of stiffness with depth is very common in practical soil
mechanics, it may be concluded that the stroke is a better parameter to characterize
the soil than the spring constant. The variability of the stroke is probably much
smaller than the variability of the spring constant.
The numerical model must also include the boundary conditions, of course. These
can most conveniently be assumed to be that both ends of the sheet pile wall are free
ends. This type of boundary condition has been considered in detail in chapter 4.

5.2 Computer program

An elementary computer program, in Turbo Pascal, is reproduced below, as the
program SPWALL. The program applies to a sheet pile wall in a homogeneous soil
with a single anchor.

program spwall;



5.2. Computer program

uses crt;
const
nn=100;zz=4;ni=100;
var
len,dep,anc,stf,wht,act,pas,neu,coh,stk,ei,ft,dz,cp:real;
n,i,ll,lp,nerr,mp,mq,plast,it:integer;
z,s,d,f,u,q,ul,ur,m,ff:array[0..nn] of real;
asl,psl,sll,pal,ppl,pnl:array[l..nn] of real;
asr,psr,slr,par,ppr,pnr:array[l..nn] of real;
p:array[0..on,1..2zz,1..2,1..2] of real;
kk:array[0..nn,1..zz] of integer;
g:array[1..2,1..2] of real;
tr,tl:array[0..nn] of integer;
fs,wt:array[0..100] of real;data:text;
procedure title;
begin
clrscr;gotoxy(37,1) ; textbackground(7) ; textcolor(0) ;write(’ SPWALL ’);
textbackground(0) ; textcolor(7) ;writeln;writeln;
end;
procedure next;
var
a:char;
begin
gotoxy(25,25) ;textbackground(7) ;textcolor(0);
write(’ Touch any key to continue ’);write(chr(8));
a:=readkey;textbackground(0);textcolor(7)
end;
procedure input;
begin
title;
writeln(’This is a program for the analysis of a sheet pile wall.’);
writeln;

write(’Length of the wall (m) ......... ’);readln(len);
write(’Depth of excavation (m) ........ ’) ;readln(dep) ;
write(’Depth of anchor point (m) ...... ’) ;readln(anc) ;
write(’Stiffness of anchor (kN/m) ..... ’);readln(stf);
write(’Unit weight of soil (kN/m3) .... ’);readln(wht);
write(’Active pressure coefficient .... ’);readln(act);
write(’Passive pressure coefficient ... ’);readln(pas);
write(’Neutral pressure coefficient ... ’);readln(neu);
write(’Cohesion (kN/m2) ............... ’);readln(coh);
write(’Total stroke (m) ............... ’);readln(stk) ;
write(’Stiffness EI (kNm2) ............ ’);readln(ei);
write(’Number of elements (max. 100) .. ’);readln(n);

if n<10 then n:=10;if n>nn then n:=nn;
if act>1 then act:=1;if pas<1 then pas:=1;
if neu<act then neu:=act;if neu>pas then neu:=pas;
ft:=0;dz:=len/n;z[0] :=0;ul0]:=0;m[0]:=0;ul[0]:=0;ur[0]:=0;
for i:=1 to n do
begin
z[i] :=z[i-1]+dz;d[i] :=dz;tr [i] :=0;t1[i] :=0;
ulil:=0;m[i]:=0;ul[i] :=0;ur[i] :=0;
end;
end;
procedure constants;
var
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szr,szl,e:real;
begin
for i:=1 to n do
begin
e:=0.001;szr:=wht*(z[i]-d[i]);if szr<e then szr:=e;
par[i] :=act*szr-2*coh*sqrt(act);if par[i]<0 then par[i]:=0;
por[i] :=neuxszr;ppr[i] :=pas*szr+2*coh*sqrt (pas) ;
if pprlil<par[i]+e then ppr[i] :=par[i]+e;
asr[i] :=(pnr[i]-par[i])*stk/ (ppr[i]l-par[i]);
psrlil:=(pprlil-pnr[i])*stk/(ppr[il-par[il);
slr[i] :=(ppr[il-par[i])/stk;
szl:=wht*(z[i]-d[i]-dep) ;if szl<e then szl:=e;
pal[i] :=act*szl-2*coh*sqrt(act);if pal[i]<0 then pall[i]:=0;
pnl[i] :=neux*szl;ppl[i] :=pas*szl+2*coh*sqrt (pas);
if ppllil<pall[i]+e then ppl[i]:=pall[i]-+e;
asl[i]:=(pnll[il-pall[il)*stk/(ppl[il-pall[il);
psllil:=(ppll[il-pnl[il)*stk/ (ppl[il-pallil);
s11[i] :=(ppl[il-pallil)/stk;
end;
end;
procedure springs;
var
i,nr,ll:integer;
um,sp,eps,sx:real;
begin
nerr:=0;plast:=0;eps:=0.000001;11:=0;
for i:=1 to n do
begin
um:=(uli]+uli-1]1)/2;if um-ul[i]>asl[i]+eps then
begin sx:=pall[i];sp:=0;nr:=1;plast:=plast+1;end
else if um-ul[i]<-psl[i]-eps then
begin sx:=ppl[i];sp:=0;nr:=-1;plast:=plast+1;end
else begin sp:=s11[i];sx:=pnl[i]+sp*ul[i];nr:=0;end;
£[i]:=sx*d[i];s[i] :=sp*d[il;
if t1[i]<>nr then begin tl[i] :=nr;nerr:=nerr+1;end;
if um-ur[i]<-asr[i]-eps then
begin sx:=par[i];sp:=0;nr:=1;plast:=plast+1;end
else if um-ur[i]>psr[i]+eps then
begin sx:=ppr[i];sp:=0;nr:=-1;plast:=plast+1;end
else begin sp:=slr[i];sx:=pnr[i]-sp*ur[i];nr:=0;end;
f[il:=f[i]-sx*d[i];s[il:=s[il+sp*d[i];
if tr[il<>nr then begin tr[i] :=nr;nerr:=nerr+1;end;
if (z[il>anc-d[i]/2) and (11=0) then
begin 11:=1;s[i]:=s[i]+stf;end;
end;
end;
procedure matrix;
var
i,j,k,l:integer;al,a2,bl,b2,cl:real;
begin
for i:=0 to n do for j:=1 to zz do
begin
kk[i,j]:=0;
for k:=1 to 2 do for 1:=1 to 2 do pli,j,k,1]:=0;
end;
for i:=1 to n-1 do
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begin
kk[i,1]:=i;kk[i,2]:=i-1;kk[i,3]:=i+1;kk[i,zz]:=3;
end;
kk[0,1]:=0;kk[0,2] :=1;kk[0,zz] :=2;
kk[n,1] :=n;kk[n,2] :=n-1;kk[n,zz] :=2;
for i:=1 to n-1 do
begin
al:=1/d[i+1];a2:=1/d[i];
pli,1,1,1]:=-a1-a2;pli,2,1,1]:=a2;p[i,3,1,1]:=al;
pli,1,1,2):=-(s[il+s[i+1])/4;p[i,2,1,2] :=-s[i]/4;
pli,3,1,2]:=-s[i+1]/4;
pli,zz,1,1] :=-(£[i]+£[i+1])/2;
pli,1,2,2]:=-a1-a2;pli,2,2,2]:=a2;p[i,3,2,2] :=al;
pli,1,2,1]:=(d[i]+d[i+1])/(4*ei);
pli,2,2,1]:=d[i]/(4*ei);p[i,3,2,1]:=d[i+1]/(4*ei);
end;
pl0,1,1,11:=1;p[0,22,1,1]:=0;
pl0,1,2,2]:=1;p[0,2,2,2] :=s[1]/2;
plo,1,2,1]1:=2/d[1];p[0,2,2,1] :=-2/d[1];
pl0,2z,2,2]:=£[1];
pln,1,1,11:=1;p[n,zz,1,1]:=0;
pln,1,2,2]:=s[n]/2;p[n,2,2,2]:=s[nl/2;
pln,1,2,11:=2/d[n];p[n,2,2,1] :=-2/d[n];
pln,zz,2,2]:=f[n];
end;
procedure solve;
var
i,j,k,1,ii,ij,1k,jj,jk,j1,jv,kc,kv,1lv:integer;
cc,aa:real;

begin
for i:=n downto O do
begin
kc:=kk[i,zz];for kv:=1 to 2 do
begin
if pli,1,kv,kv]=0 then
begin
writeln(’Error : no equilibrium possible’);halt;
end;

cc:=1.0/pli,1,kv,kv];
for ii:=1 to kc do for 1lv:=1 to 2 do
begin
pli,ii,kv,1lv]:=cc*pl[i,ii,kv,1lv];
end;
pli,zz,kv,kv] :=cc*p[i,zz,kv,kv];
for 1lv:=1 to 2 do if (1v<>kv) then
begin
cc:=pli,1,1lv,kv];
for ii:=1 to kc do for ij:=1 to 2 do

begin
pli,ii,1lv,ijl:=pli,ii,1lv,ijl-cc*pli,ii,kv,ijl;
end;
pli,zz,1v,1v]:=pli,zz,1lv,1lv]-cc*pli,zz,kv,kv];
end;

end;
if kc>1 then
begin



74 5. SHEET PILE WALLS

for j:=2 to kc do
begin
jj:=kkl[i,jl;1l:=kk[jj,zz];jk:=1;
for jl:=2 to 1 do begin if kk[jj,jl]=1i then jk:=jl;end;
for kv:=1 to 2 do for 1lv:=1 to 2 do glkv,1lv]:=pljj,jk,kv,1v];
kk[jj,jk]:=kk[jj,1];kk[jj,1]:=0;
for kv:=1 to 2 do for 1lv:=1 to 2 do
begin
pljj,jk,kv,1v]:=pljj,1,kv,1v]l;pljj,1,kv,1v]:=0;
pljj,zz,1v,1v]:=pljj,zz,1v,1vl-gllv,kvl*p[i,zz,kv,kv];
end;
1:=1-1;kk[jj,zz]:
for ii:=2 to kc do

1;

begin
ij:=0;
for ik:=1 to 1 do
begin
if kk[jj,ik]=kk[i,ii] then ij:=ik;
end;
if ij=0 then
begin
1:=1+1;ij:=1;kk[jj,zz] :=1;kk[jj,ij]:=kk[i,ii];
end;

for kv:=1 to 2 do for 1lv:=1 to 2 do for jv:=1 to 2 do
pljj,ij,kv,1v]l:=p[jj,ij,kv,1lv]l-glkv,jvl*p[i,ii,jv,1v];

end;
end;
end;
end;
for j:=0 to n do
begin
1:=kk[j,zz];if 1>1 then
begin
for k:=2 to 1 do
begin
jj:=kk[j,kl;

for kv:=1 to 2 do for 1lv:=1 to 2 do
plj,zz,kv,kv] :=p[j,zz,kv,kv]-p[j,k,kv,1v]l*p[jj,zz,1lv,1v];
end;
end;
end;
for i:=0 to n do begin m[i]:=pl[i,zz,1,1];uli]l:=p[i,zz,2,2];end;
ql[0]:=0;££[0]:=0;for i:=1 to n do
begin
aa:=(m[i]l-m[i-1]1)/d[i];
qlil:=-qli-11+2*aa;ff[i]:=(q[i-11-q[il)/d[il;

end;
end;
begin
input;constants;title;springs;it:=0;
repeat
matrix;solve;springs;
writeln(’Number of plastic springs .......... ’,plast);
writeln(’Displacement at the top (m) ........ >,ul0]:8:6);

if plast=2*n then begin writeln(’Pile failed’) ;nerr:=0;end;
it:=it+1;if it=ni then
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begin
writeln(’Warning : no convergence ’);writeln;nerr:=0;
end;
until nerr=0;
if plast<2#*n then
begin
title;11:=0;
writeln(’ z u M Q £2);
for i:=0 to n do
begin
writeln(z[i]:8:3,uli]:10:3,m[i]:10:3,q[i]:10:3,f£f[i]:10:3);
11:=11+1;if (11=20) then
begin
next;title;11:=0;
writeln(’ z u M Q £2);
end;
end;
next;title;
end;
end.

Program SPWALL.

The program runs interactively, and will present information about its operation
and input data automatically. The program is a straightforward extension of the
program WINKLER, presented in chapter 4. The main extension is that the soil
reaction consists of reactions on the left side as well as the right side. It is assumed
in the program that the soil is fully homogeneous, and that the soil surface at the
left side is lowered by excavation. The program calculates the deformations due to
this excavation. In the program the parameters tr[i] and t1[i] indicate the state
of the springs in node i at the right side and the left side, respectively. If its value
is 0 the spring is in the elastic range, if its value is 4+1 the spring is in the active
state, and if its value is -1 the spring is in the passive state. Initially all springs are
assumed to be in the elastic range. After calculating all displacements the program
checks whether these assumptions were correct, and if necessary corrects them and
repeats the calculations.

The soil response is characterized by the neutral, active and passive soil pressure
coefficients, the cohesion, the weight of the material, and a characteristic displace-
ment, the stroke, which represents the displacement difference between the states of
active and passive lateral stress, see also figures 5.2 and 5.3. Output consists of a
list on the screen of the lateral displacement, the bending moment, the shear force,
and the resultant lateral load, all as a function of depth. More advanced output
features, such as graphical facilities, may be added by the user.

Example

As an example some results are shown for a sheet pile wall with the following data.

15
10

len
dep
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anc = 2
stf = 10000
wht = 20
act = 0.3333
pas = 3.0000
neu = 1.0000
coh = 0
stk = 0.02
ei = 100000
n = 100

Data for example 1.

This example refers to an excavation of 10 m depth in sand. The length of the sheet
pile wall is 15 m, and the anchor is located at a depth of 2 m. The data for the soil,
the sheet pile wall and the anchor are given in the table. Some of the results are
shown in figure 5.4, in the form of a graph of the resultant horizontal stresses acting

—100
| | 0 ; 190 | 2(?0 ; 3(?0 F (KN /m?)

Figure 5.4: Resultant horizontal stresses.

on the wall. It appears that in the top 10 meters the lateral soil pressure is the
active soil pressure from the right, and below that level the passive pressure from
the left starts to dominate, as seems natural. In the top part of the wall the pressure
appears to be somewhat larger. The displacements of the stiff wall are to the right
there, because of the effect of the anchor, so that larger horizontal pressures are
generated. At the lower end of the wall it appears that a very high pressure from
the right side of the wall is generated. Again this must be due to deformations
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towards the right. This phenomenon is taken into account in Blum’s simplified
method, by an equivalent concentrated force (Blum, 1931). The occurrence of this
force at the bottom of the sheet pile wall in the numerical model may be considered
as a confirmation of the validity of Blum’s original assumption.

The program SPWALL may be used as the basis of programs with more ad-
vanced features, such as a sheet pile wall with several anchors in a layered soil, with
complex loading and excavation histories. Such programs are distributed by various
companies and institutes.

Problems

5.1  Run the program SPWALL with the data of example 1, given above. Also
run the program with modified data, for instance by taking a different value for the
stroke. Show that Blum’s concentrated force occurs only if the stroke is relatively
small, which indicates a stiff soil.

5.2  Compare the results obtained by the program SPWALL with results obtained
by Blum’s method, if this method is available.

5.3 Modify the program SPWALL so that it shows the deflection curve, the bend-
ing moment, the shear force, and the lateral stress in the form of graphs on the screen.

X



